Active learning for human protein-protein interaction prediction

Mohamed TP, Carbonell JG, Ganapathiraju MK. Active learning for human protein-protein interaction prediction. BMC Bioinformatics. 2010 Jan 18;11 Suppl 1:S57. doi: 10.1186/1471-2105-1-S1-S57. PubMed PMID: 20122232. PMCID: PMC3009530.

BACKGROUND:

Biological processes in cells are carried out by means of protein-protein interactions. Determining whether a pair of proteins interacts by wet-lab experiments is resource-intensive; only about 38,000 interactions, out of a few hundred thousand expected interactions, are known today. Active machine learning can guide the selection of pairs of proteins for future experimental characterization in order to accelerate accurate prediction of the human protein interactome.

RESULTS:

Random forest (RF) has previously been shown to be effective for predicting protein-protein interactions. Here, four different active learning algorithms have been devised for selection of protein pairs to be used to train the RF. With labels of as few as 500 protein-pairs selected using any of the four active learning methods described here, the classifier achieved a higher F-score (harmonic mean of Precision and Recall) than with 3000 randomly chosen protein-pairs. F-score of predicted interactions is shown to increase by about 15% with active learning in comparison to that with random selection of data.

CONCLUSION:

Active learning algorithms enable learning more accurate classifiers with much lesser labelled data and prove to be useful in applications where manual annotation of data is formidable. Active learning techniques demonstrated here can also be applied to other proteomics applications such as protein structure prediction and classification.

Publication Year: 
2010
Publication Credits: 
Mohamed TP, Carbonell JG, Ganapathiraju MK
Publication Download: 
AttachmentSize
PDF icon activelearningforhuman.pdf1.05 MB
^